
KIT – Die Universität in der Helmholtz-Gemeinschaft

12th HPC Café
02.12.2025

12th HPC Café Scientific Computing Center (SCC)

Topics for today:

Xega and the Quest for Parallelization of Extended Evolutionary and
Genetic Algorithms - Andreas Geyer-Schulz

Updates from the HPC operations side

Upcoming HPC Café

Discussion and open floor

As usual this format is meant to be interactive.

Don’t hesitate to ask questions!

02.12.20252

Agenda HPC Café – 02.12.2025

KIT – Die Universität in der Helmholtz-Gemeinschaft

Xega and the Quest for
Parallelization of Extended
Evolutionary and Genetic
Algorithms

INFORMATION SERVICES AND ELECTRONIC MARKETS andreas.geyer-schulz@kit.edu

xega and the Quest for Parallelization of Extended
Evolutionary and Genetic Algorithms

Andreas Geyer-Schulz | December 1, 2025

KIT – University of the State of Baden-Wuerttemberg and

National Laboratory of the Helmholtz Association

www.kit.edu

http://www.kit.edu

Content

1. Parallelization

2. xega

3. Pipeline Compilation

4. Multicore Experiments on BwUniCluster 3.0

5. mpi

Parallelization xega Pipeline Compilation Multicore Experiments on BwUniCluster 3.0 mpi References

Andreas Geyer-Schulz –
xega and the Quest for Parallelization of Extended Evolutionary and Genetic Algorithms

December 1, 2025
2 / 32

The Vision of Genetics

... compute with a billion (109) genes.

HPC-Cafe, December, 2nd, 2025, KIT, Karlsruhe)

Acknowledgements. The author acknowledges support by the state of
Baden-Württemberg through bwHPC.

Parallelization xega Pipeline Compilation Multicore Experiments on BwUniCluster 3.0 mpi References

Andreas Geyer-Schulz –
xega and the Quest for Parallelization of Extended Evolutionary and Genetic Algorithms

December 1, 2025
3 / 32

The Phases of an Algorithm of xega I

Function xegaRun(a parameter list):
InitPopulation; evalPopulation
repeat

nextPopulation: foreach Gene in Population do
ReplicateGene

begin
//* Abstract Operator Pipeline: *//

selectGene; crossGene; mutateGene; acceptGene

end
end
evalPopulation: foreach Gene in Population do

evalGene

end
until Termination Condition == TRUE

Parallelization xega Pipeline Compilation Multicore Experiments on BwUniCluster 3.0 mpi References

Andreas Geyer-Schulz –
xega and the Quest for Parallelization of Extended Evolutionary and Genetic Algorithms

December 1, 2025
4 / 32

3 Parallel Models for GAs and EAs

Global Parallelization

CPU1

CPU2 CPU3 CPUn

Master

Slave Slave Slave

Solution

Evaluated

(as well as Parallel Island and Parallel Cellular Models)

Parallelization xega Pipeline Compilation Multicore Experiments on BwUniCluster 3.0 mpi References

Andreas Geyer-Schulz –
xega and the Quest for Parallelization of Extended Evolutionary and Genetic Algorithms

December 1, 2025
5 / 32

Global Parallelization

Dominant Model for GAs and EAs, because:

Ready-made master-slave implementations across middleware
solutions are available.

easy to implement with clear division of labor:
In each generation 2 steps:

1. Genetic machinery on master (nextPopulation): Sequential.
2. Fitness evaluation on slaves (evalPopulation): Parallel.

Assumptions:

1. (A1) Execution cost of genetic machinery (nextPopulation) is low
compared to cost of fitness evaluation (evalPopulation).

2. (A2) Available middleware works.

A single loop must be parallelized.

Parallelization xega Pipeline Compilation Multicore Experiments on BwUniCluster 3.0 mpi References

Andreas Geyer-Schulz –
xega and the Quest for Parallelization of Extended Evolutionary and Genetic Algorithms

December 1, 2025
6 / 32

The R-Package xega: e(x)tended (e)volutionary and
(g)enetic (a)lgorithms

Provides 64 million structurally different heuristic algorithms
(Families: Evolutionary algorithms, genetic algorithms, differential
evolution, simulated annealing, grammar-based genetic
programming, grammatical evolution, grammatical differential
evolution, permutation-based genetic algorithms.)

Implemented in R-script (a kind of 2nd generation LISP).

xega (0.9.0.18) [Geyer-Schulz, 2024]:
https://CRAN.R-project.org/package=xega

install.packages("xega")

Developer’s version: https://github.com/ageyerschulz/xega

xega’s architecture: [Geyer-Schulz, 2025]

Step 1: Installation.

Parallelization xega Pipeline Compilation Multicore Experiments on BwUniCluster 3.0 mpi References

Andreas Geyer-Schulz –
xega and the Quest for Parallelization of Extended Evolutionary and Genetic Algorithms

December 1, 2025
7 / 32

The xega Analysis Pipeline

Problem
Environments

Diagnostics

Interface:
Problem environment

Interface:
Solution object

Genetic
Algorithm

Problem
Specification

Solver
Analysis and
Visualization

Parabola2D
in R-package

xega

xegaRun()
in R-package

xega

xegaPrintSolution()
in R-package

xegaDiag

> library(xega); library(xegaDiag)

Loading required package: parallelly

> a<-xegaRun(penv=Parabola2D, algorithm="sga", max=FALSE , verbose=0)

> xegaPrintSolution(a)

Min Parabola2D !

Fitness: -0.0008741791 f(Parameters): -0.0008741791

Parameters: 0.02612259 -0.01384879

Time used: 0.1407065 seconds.

An End User Session: Find the minimum of a 2-D Parabola!
Parallelization xega Pipeline Compilation Multicore Experiments on BwUniCluster 3.0 mpi References

Andreas Geyer-Schulz –
xega and the Quest for Parallelization of Extended Evolutionary and Genetic Algorithms

December 1, 2025
8 / 32

xega Algorithms and Problem Environments

Option algorithm

selects an

algorithm

"sgp"

"sge"

"sgede"

"sga"

"sgede"

binary

genetic algorithm

differential evolution

grammar-based

genetic programming

grammatical

evolution

grammatical evolution

by differential evolution

"sgperm"

Solvers for

TSP-problems

The k-Symmetry Problem

Is 010 symmetric?

Solution

xegaRun(...,

algorithm=<aname> ,

penv=<pname>,

grammar=<gname),

...)

0
1
0

1

OR(AND(D1, D3),

AND(NOT(D1), NOT(D3)))

1

D1<-0; D2<-1; D3<-0

Option penv

selects a

problem environment

sym3env<-newEnvKsymmetry(k=3)

sym3env

sym3NNenv<-newEnvKsymmetry(

k=3, topology=c(3, 3, 3, 1))

sym3NNenv

Option grammar

selects a

grammar object

text file with grammar in BNF

grammar object

Parallelization xega Pipeline Compilation Multicore Experiments on BwUniCluster 3.0 mpi References

Andreas Geyer-Schulz –
xega and the Quest for Parallelization of Extended Evolutionary and Genetic Algorithms

December 1, 2025
9 / 32

xega Algorithms
Choice

of Algorithm

Gene

Representation

Neighborhood

Operators

Genetic Algorithm
01100011000110101

11100011000110000

Grammar-Based

Genetic Programming

Complete Derivation Trees

Insert a

Random Tree

at a Random

Position

Differential Evolution

Exchange two

Random SubTrees

at Random

Positions

Grammatical Evolution
01100011000110101

11100011000110000

Crossover

01100011000110000

11100011000110101

Mutation

00000011000110101

Crossover

01100011000110000

11100011000110101

Mutation

00000011000110101

Complete Derivation Trees

Grammatical Evolution

by Differential Evolution

 x[i] = (0.05<runif(1)) *

 (x[i] + sigma*runif(1)

0.375 2.3 -1.35 3.4 7.9 20.5

1.22 4.35 -3.4 3.9 0.5 -1.43

x

 x[i] = (0.05<runif(1)) *

 (x[i] + sigma*runif(1)

0.375 2.3 -1.35 3.4 7.9 20.5

1.22 4.35 -3.4 3.9 0.5 -1.43

x

DECODE

DECODE

Complete Derivation Trees

algorithm="sga"

algorithm="sgde"

algorithm="sgp"

algorithm="sge"

algorithm="sgede"

Parallelization xega Pipeline Compilation Multicore Experiments on BwUniCluster 3.0 mpi References

Andreas Geyer-Schulz –
xega and the Quest for Parallelization of Extended Evolutionary and Genetic Algorithms

December 1, 2025
10 / 32

xega’s Approach to Parallelization (I)

Redefine the lapply statement in
xegaPopulation::xegaEvalPopulation():
pop <-lF$lapply(pop , lF$EvalGene , lF=lF)

xega provides:

1. a set of preconfigured redefinitions of the lapply statement (multicore,
future, cluster) with synchronous and asynchronous communication.
E.g. for multicore with synchronous communication:
MClapply <-function(pop , EvalGene , lF)

{ parallel :: mclapply(pop , EvalGene , lF=lF,

mc.cores=max(1, lF$Cores()), mc.set.seed = TRUE)

}

2. the possibility of injecting user-defined parallel lapply statements
(e.g. for using mpi).

Parallelization xega Pipeline Compilation Multicore Experiments on BwUniCluster 3.0 mpi References

Andreas Geyer-Schulz –
xega and the Quest for Parallelization of Extended Evolutionary and Genetic Algorithms

December 1, 2025
11 / 32

The Problem: Assumption A1 Does Not Hold ...

Problem TSP a280 (Multicore) Run 1-a Run 2 Run 3
Population 320 500 700
Generations 100 200 300
NextPopulation - Sequential (s) 1503.87 4677.60 11576.55
xega Main Loop (s) 1504.93 4903.27 11588.47
Time Spent in NextPopulation (%) 99.93 95.40 99.90

Table 1: Percentage of execution time in sequential code for the symmetric TSP
problem a280 (from the TSPLIB).

Reason (for this example):
TSP heuristics which evaluate the fitness of a gene as genetic
operators.

Implication: Gains from parallelization are very, very small for most
algorithms in xega.

Parallelization xega Pipeline Compilation Multicore Experiments on BwUniCluster 3.0 mpi References

Andreas Geyer-Schulz –
xega and the Quest for Parallelization of Extended Evolutionary and Genetic Algorithms

December 1, 2025
12 / 32

... for Almost All Algorithms in xega

Experiments (AMD)
Main (s) Replication (s) % Seq

Grammatical Evolution (GE) 7700.09 25.64 0.33
Genetic Algorithm (GA) 1370.50 26.28 1.92

Grammar-Based Genetic Programming (GP) 8952.49 1167.99 13.05
Differential Evolution (DE) 1455.06 1445.90 99.37

Grammatical Differential Evolution (GDE) 7862.46 7832.93 99.62
GA with Permutation Operators (GAperm) 8554.43 8543.16 99.87

Table 2: Percentage of Execution Time Spent in Sequential Code. Ranked and
Grouped by % Seq(uential).

.

High Potential for Parallelization with
Pipeline Compilation!

Parallelization xega Pipeline Compilation Multicore Experiments on BwUniCluster 3.0 mpi References

Andreas Geyer-Schulz –
xega and the Quest for Parallelization of Extended Evolutionary and Genetic Algorithms

December 1, 2025
13 / 32

Pipeline Compilation

Definition
Pipeline compilation is the process of transforming an abstract genetic
operator pipeline into a function closure.

Components of an R function:

1. An argument list.

2. The function body (a parsed R statement).

3. The environment of the function is the environment that was active at
the time that the function was created. Any symbols bound in that
environment are captured and available to the function.

Parallelization xega Pipeline Compilation Multicore Experiments on BwUniCluster 3.0 mpi References

Andreas Geyer-Schulz –
xega and the Quest for Parallelization of Extended Evolutionary and Genetic Algorithms

December 1, 2025
14 / 32

From R Code ...

Input: population: A vector of genes.
fitness: A vector of reals.

Output: gene: A gene.

Function ReplicateGene(population, fitness):
gene←− selectGene(population, fitness);
if rand() < crossrate then

gene2←− selectGene(population, fitness);
gene←− crossGene(gene, gene2)

end
if rand() < mutrate then

gene←− mutateGene(gene)
end
return gene

Parallelization xega Pipeline Compilation Multicore Experiments on BwUniCluster 3.0 mpi References

Andreas Geyer-Schulz –
xega and the Quest for Parallelization of Extended Evolutionary and Genetic Algorithms

December 1, 2025
15 / 32

... to Creating Function Closures

Input: population: Vector of genes.
fitness: Vector of reals.
lF : Local function list
Output: gene: A gene.

Function ReplicateGenePipeline(population, fitness, lF):
gene ←− lF$selectGene (population, fitness, lF);
cross ←− rand()< lF$crossrate();
mut ←− rand()< lF$mutrate();
if cross and not(mut) then

gene1←− lF$selectMate (population, fitness, lF);
return newCrossPipeline (gene, gene1, lF)

end
if not(cross) and not(mut) then

return newPipeline(gene, lF)
end
if not(cross) and mut then

return newMutPipeline(gene, lF)
end
if cross and mut then

gene1←− lF$selectMate (population, fitness, lF);
return newCrossMutPipeline(gene, gene1, lF)

end

Parallelization xega Pipeline Compilation Multicore Experiments on BwUniCluster 3.0 mpi References

Andreas Geyer-Schulz –
xega and the Quest for Parallelization of Extended Evolutionary and Genetic Algorithms

December 1, 2025
16 / 32

The Constructor for a Function Closure with
Crossover and Mutation I

newCrossMutPipeline <-function(g, g1, lF)

{ Pipeline <-function(lF)

{ OPpip <-function(g, lF)

{ g2<-lF$CrossGene(g, g1, lF)[[1]]

lF$MutateGene(g2, lF)}

lF$EvalGene(lF$Accept(OPpip , g, lF), lF)}

rlang::env_unbind(environment(Pipeline), c("lF"))

return(Pipeline) }

a<-newCrossMutPipeline(g, g1, lFxegaGaGene)

produces the closure
print(a)

function (lF)

{

OPpip <- function(g, lF) {

g2 <- lF$CrossGene(g, g1, lF)[[1]]

lF$MutateGene(g2, lF)

}

lF$EvalGene(lF$Accept(OPpip , g, lF), lF)

}

<bytecode: 0x557ed58fbb48>

<environment: 0x557ed58fe0f8>

Parallelization xega Pipeline Compilation Multicore Experiments on BwUniCluster 3.0 mpi References

Andreas Geyer-Schulz –
xega and the Quest for Parallelization of Extended Evolutionary and Genetic Algorithms

December 1, 2025
17 / 32

The Constructor for a Function Closure with
Crossover and Mutation II

with the environment

>as.list(environment(a))

$Pipeline
function (lF)

{ OPpip <- function(g, lF) {

g2 <- lF$CrossGene(g, g1, lF)[[1]]

lF$MutateGene(g2, lF) }

lF$EvalGene(lF$Accept(OPpip , g, lF), lF)

}

<bytecode: 0x557ed58fbb48>

<environment: 0x557ed58fe0f8>

$g
gevaluated
[1] FALSE

gevalFail
[1] FALSE

gfit
[1] 0

ggene1
[1] 0 1 1 0 1 0 1 0 0 1 0 0 0 0 1 1 1 0 0 0 0 0 1 1 0 0 0 1 1 0 1 0 1 1 0 0 1 1 0 1

Parallelization xega Pipeline Compilation Multicore Experiments on BwUniCluster 3.0 mpi References

Andreas Geyer-Schulz –
xega and the Quest for Parallelization of Extended Evolutionary and Genetic Algorithms

December 1, 2025
18 / 32

The Constructor for a Function Closure with
Crossover and Mutation III

$g1
$g1$evaluated
[1] FALSE

$g1$evalFail
[1] FALSE

$g1$fit
[1] 0

$g1$gene1
[1] 0 1 0 0 0 0 0 0 1 1 0 0 1 1 0 0 0 0 1 1 0 0 0 1 1 1 1 0 0 1 0 0 1 1 0 0 0 0 1 0

For additional (full) examples:

library(xegaGaGene)

example(newPipeline)

example(newMutPipeline)

example(newCrossPipeline)

example(newCrossMutPipeline)

Parallelization xega Pipeline Compilation Multicore Experiments on BwUniCluster 3.0 mpi References

Andreas Geyer-Schulz –
xega and the Quest for Parallelization of Extended Evolutionary and Genetic Algorithms

December 1, 2025
19 / 32

The Gene Representation Cycle

NextPopulation

(Genetic Machinery Executed)

Gene Initialization

Population: Vector of

Genes (Named Lists)

Not evaluated.

Population: Vector of

Genes (Named Lists)

Evaluated.

EvalPopulation

Population: Vector of

Genes (Named Lists)

Population: Vector of

Genes (Named Lists)

asPipeline

Gene Initialization

NextPopulation

(Genetic Machinery Compiled)

Population: Vector of

Function Closures

EvalPopulation

Operator Pipeline Executed Operator Pipeline Compiled

Parallelization xega Pipeline Compilation Multicore Experiments on BwUniCluster 3.0 mpi References

Andreas Geyer-Schulz –
xega and the Quest for Parallelization of Extended Evolutionary and Genetic Algorithms

December 1, 2025
20 / 32

The Phases of an Algorithm of xega (Pipeline
Compilation)
Function xegaRun(a parameter list):

InitPopulation; asPipeline; evalPopulation
repeat

nextPopulation: foreach Gene in Population do
ReplicateGene

begin
Compile Abstract Operator Pipeline

end
end
evalPopulation: foreach Closure in Population do

evalClosure

begin
selectGene; crossGene; mutateGene; acceptGene;

evalGene
end

end
until Termination Condition == TRUE

Parallelization xega Pipeline Compilation Multicore Experiments on BwUniCluster 3.0 mpi References

Andreas Geyer-Schulz –
xega and the Quest for Parallelization of Extended Evolutionary and Genetic Algorithms

December 1, 2025
21 / 32

The Shift in Execution Time ...

Phases of xega A: No Pipeline (s) B: Pipeline (s)
tMainLoop 325.88 318.91

tInitPopulation 0.01 0.01
tNextPopulation 325.10 0.28
tEvalPopulation 0.74 318.58

tObservePopulation 0.01 0.01
tSummaryPopulation 0.01 0.01

Table 3: Profile of Run 1-b for TSP problem a280. Rounded to 2 Decimals.
Execution model: Sequential. Population: 320. Generations: 100. Crossover
Rate: 0.1. Mutation Rate: 0.1. Experiment (INTEL)

Parallelization xega Pipeline Compilation Multicore Experiments on BwUniCluster 3.0 mpi References

Andreas Geyer-Schulz –
xega and the Quest for Parallelization of Extended Evolutionary and Genetic Algorithms

December 1, 2025
22 / 32

... and Gains from Parallelization

Phases of xega A: No Pipeline (s) B: Pipeline (s) A/B B/A
tMainLoop 30215.81 5069.88 5.96 0.17

tInitPopulation 0.02 0.01
tNextPopulation 30193.24 10.79
tEvalPopulation 21.96 5058.00

tObservePopulation 0.25 0.18
tSummaryPopulation 0.04 0.03

Table 4: Profiles of Run 5 for TSP problem a280. Rounded to 2 Decimals.
Execution model: Multicore. Population: 1200. Generations: 500. Crossover
Rate: 0.1. Mutation Rate: 0.1. Experiment (INTEL) with 20 virtual cores

Parallelization xega Pipeline Compilation Multicore Experiments on BwUniCluster 3.0 mpi References

Andreas Geyer-Schulz –
xega and the Quest for Parallelization of Extended Evolutionary and Genetic Algorithms

December 1, 2025
23 / 32

Experimental Setup

Treatment Execution Model Pipeline Compilation
(1) Sequential No
(2) Sequential Yes
(3) MultiCore No
(4) MultiCore Yes

Table 5: Experimental Treatments. Population size: 2400. Generations: 200.

For each algorithm:

Algorithm Problem Solution Main Operations
GE 8-Symmetry Boolean Formula Logic, integer
GA 8-Symmetry Neural Network Floating point
GP 8-Symmetry Boolean Formula List, logic, integer
DE 8-Symmetry Neural Network Floating point

GDE 8-Symmetry Boolean Formula Logic, floating point
GAperm TSP lin105 Permutation Integer, floating point

Parallelization xega Pipeline Compilation Multicore Experiments on BwUniCluster 3.0 mpi References

Andreas Geyer-Schulz –
xega and the Quest for Parallelization of Extended Evolutionary and Genetic Algorithms

December 1, 2025
24 / 32

Genetic Programming

Tr. Alg. Exec. Pipe Speedup Main (s) Next (s) Eval (s) x
(1) GP Seq No 28.00 7063.52 943.73 6119.02 15.00

(σ: 62.01) (σ: 8.96) (σ: 55.81)
(2) GP Seq Yes 28.04 7073.27 11.22 7061.28 15.00

(σ: 73.98) (σ: 0.25) (σ: 73.92)
(3) GP MC No 4.27 1078.34 906.79 170.66 15.00

(σ: 15.84) (σ: 15.19) (σ: 3.19)
(4) GP MC Yes 1.00 252.29 19.55 231.67 15.00

(σ: 2.42) (σ: 0.65) (σ: 2.55)
Experiment HPC with 40 virtual cores

Table 6: 8-Symmetry Problem. GP: Grammar-Based Genetic Programming.
Optimal Solution: 0. 50 Trials.

Parallelization xega Pipeline Compilation Multicore Experiments on BwUniCluster 3.0 mpi References

Andreas Geyer-Schulz –
xega and the Quest for Parallelization of Extended Evolutionary and Genetic Algorithms

December 1, 2025
25 / 32

Differential Evolution

Tr. Alg. Exec. Pipe Speedup Main (s) Next (s) Eval (s) x
(1) DE Seq No 8.05 1165.35 1158.68 6.48 11.43

(σ: 14.42) (σ: 14.36) (σ: 0.07)
(2) DE Seq Yes 8.07 1167.99 15.65 1152.14 11.43

(σ: 18.86) (σ: 0.23) (σ: 18.74)
(3) DE MC No 8.36 1210.26 1194.68 15.35 11.43

(σ: 16.73) (σ: 16.74) (σ: 0.22)
(4) DE MC Yes 1.00 144.76 20.10 124.31 14.01

(σ: 1.52) (σ: 0.28) (σ: 1.44)
Experiment HPC with 40 virtual cores

Table 7: 8-Symmetry Problem NN. DE: Differential Evolution. Optimal Solution: 0.
50 Trials.

Parallelization xega Pipeline Compilation Multicore Experiments on BwUniCluster 3.0 mpi References

Andreas Geyer-Schulz –
xega and the Quest for Parallelization of Extended Evolutionary and Genetic Algorithms

December 1, 2025
26 / 32

Summary of Experiments

Sequential Parallel
Pipeline: FALSE TRUE FALSE TRUE
Algorithm Speedup (1) Speedup (2) Speedup (3) Speedup (4)

GE 29.85 27.98 0.95 1.00
GA (NN, FP) 8.24 8.24 1.04 1.00

GP 28.00 28.04 4.27 1.00
DE (NN, FP) 8.05 8.07 8.36 1.00

GDE 22.85 22.81 23.83 1.00
GAperm (TSP, FP) 9.17 9.22 9.41 1.00

Pipeline compilation improves the performance
of 5 out of 6 algorithm families.

Parallelization xega Pipeline Compilation Multicore Experiments on BwUniCluster 3.0 mpi References

Andreas Geyer-Schulz –
xega and the Quest for Parallelization of Extended Evolutionary and Genetic Algorithms

December 1, 2025
27 / 32

Limits of MultiCore (SMP) Parallelization for R

Maximum of 125 cores. (TCP/IP 7bit address in sendqueue).

With out-of-the-box parallelization,
not possible to use all cores on one node.

Floating point support of HPC nodes too limited.

With 1000 genes per core,
104 cores to go ...

Parallelization xega Pipeline Compilation Multicore Experiments on BwUniCluster 3.0 mpi References

Andreas Geyer-Schulz –
xega and the Quest for Parallelization of Extended Evolutionary and Genetic Algorithms

December 1, 2025
28 / 32

Rmpi and mpi I

Assumption 2 does not hold:

R interface problems: Rmpi does not serialize function closures.
Consequence: Pipeline compilation does not work.
Remedy: base::serialize() and base::unserialize() work with function
closures.
Modify apply function!

Fix leads to new problems:
Out of memory:

Fix: “Manual garbage collection” leads to performance degradation.
Potential fix: Allocate different memory size to master and slave
processes.
How do I specify this in Slurm script?

Parallelization xega Pipeline Compilation Multicore Experiments on BwUniCluster 3.0 mpi References

Andreas Geyer-Schulz –
xega and the Quest for Parallelization of Extended Evolutionary and Genetic Algorithms

December 1, 2025
29 / 32

Rmpi and mpi II

OpenMPI UCX 1.18 transport layer bugs in scatter and gather
operations for large and complex R objects (e.g. complete
derivation trees).

Use older OpenMPI version without bugs. (Which? Who installs?)
Rewrite distribution code: Communicate only filenames via rmpi. Rest
of the communication via base::saveRDS() and base::readRDS() over
the file system.
Think about the architecture and minimize the need to communicate.

Unsolved problems!

Parallelization xega Pipeline Compilation Multicore Experiments on BwUniCluster 3.0 mpi References

Andreas Geyer-Schulz –
xega and the Quest for Parallelization of Extended Evolutionary and Genetic Algorithms

December 1, 2025
30 / 32

Paper and Code

Geyer-Schulz, A. and Zamani Shandiz, M. (2025) Compiling Abstract
Genetic Operator Pipelines in the R Package xega.
[Geyer-Schulz and Zamani Shandiz, 2025]

Code:
https://github.com/ageyerschulz/xegaPipelineExperiments

xega 0.9.0.18
https://CRAN.R-project.org/package=xega

Parallelization xega Pipeline Compilation Multicore Experiments on BwUniCluster 3.0 mpi References

Andreas Geyer-Schulz –
xega and the Quest for Parallelization of Extended Evolutionary and Genetic Algorithms

December 1, 2025
31 / 32

References I

Geyer-Schulz, A. (2024).
xega: Extended evolutionary and genetic algorithms.
Technical Report 2024-10, IISM, KIT, Karlruhe.

Geyer-Schulz, A. (2025).
xegaX. A family of R-packages for genetic and evolutionary
algorithms with multiple genome representations.
Archives of Data Science, Series A, 10(1):1 – 37.

Geyer-Schulz, A. and Zamani Shandiz, M. (2025).
Compiling abstract genetic operator pipelines in the R-package xega.
Evolutionary Computation.
Submitted.

Parallelization xega Pipeline Compilation Multicore Experiments on BwUniCluster 3.0 mpi References

Andreas Geyer-Schulz –
xega and the Quest for Parallelization of Extended Evolutionary and Genetic Algorithms

December 1, 2025
32 / 32

KIT – Die Universität in der Helmholtz-Gemeinschaft

Updates from the
HPC operations side

12th HPC Café Scientific Computing Center (SCC)

Maintenance work in the HPC building at Campus North

Extensive electrical work in preparation for HoreKa 2

Update: No downtime in 2025 of the systems

Current schedule: Downtime in CW 7 in 2026

Starting Monday, 9 February 2026

Estimated duration one week

Transition to HoreKa 2

Most importantly: you will be able to use your granted compute time

There will always be CPU and accelerated resources available

Transition to the new system will happen at a specific date (tbd)

→ We will keep you informed about any steps you might need to do in advance

02.12.20255

Maintenance and Transition to HoreKa 2

KIT – Die Universität in der Helmholtz-Gemeinschaft

Upcoming HPC Cafés

12th HPC Café Scientific Computing Center (SCC)

Next HPC Café planed for beginning of February

Starting March 2026 new timeslot for the HPC Café

Every first Thursday of the month 10:00 am

As always, open to hear ideas for topics and talks, from …

Yourself

Colleagues and collaborators

Also just expressions for “topics of interest”

02.12.20257

Next HPC Café

12th HPC Café Scientific Computing Center (SCC)

The NHR@KIT, bwHPC-S5 @KIT and SCS team wished you
a merry Christmas time and a happy new year!

02.12.20258

